
Proceedings of the Twelfth Annual International Symposium of the
International Council On Systems Engineering (INCOSE) - 1 August 2002

michael.sutherland@galactic-solutions.com
© 2002 Galactic Solutions Group LLC Page 1

Product Line Requirements Management

Michael Sutherland
Galactic Solutions Group LLC

michael.sutherland@galactic-solutions.com

Abstract: Product development organizations use
design reuse strategies to build common
subsystems for the complex systems they develop
and the many customers these systems are
delivered to. Sub-systems are designed with an
Architecture that will allow for strategic reuse. A
base design for a sub-system is designed, with
some reasonable modifications for specific
Applications, to meet the requirements of the
systems the subsystem will be incorporated into.

This paper provides details on a strategy for
Requirement Management across Product Lines
that has successfully been deployed within a large
Product Development and Manufacturing
organization.

Introduction: A Product Line is a group of
products having a common set of features that are
varied to satisfy the requirements of two or more
Applications. A Product Line may initially consist
of one Product designed for a single Application,
which is then targeted for re-use with another
Application. More mature product development
organizations will engineer a common Product
Architecture, which facilitates re-use and
expansion of the Product Line. Domain expertise
is leveraged to develop reusable core assets,
which are then specialized by Application
Engineers to develop the final products for specific
Applications.

Example - Engine Product Line: In the
automotive industry, a Vehicle incorporates a
Powertrain to deliver and manage power to the
Vehicle. Among its other components, a
Powertrain uses an Engine to deliver power. A
Vehicle is offered to the customer with more than
one Engine option, such as a six cylinder Gamma
V6 engine optimized for fuel economy and cost, or
an eight cylinder Delta V8 engine optimized for
power and performance.

Vehicle
Alpha

Vehicle
Beta

Powertrain
Product

Line Alpha

Powertrain
Product

Line Beta

Engine
Product Line
Gamma V6

Engine
Product

Line Delta
V8

Figure 1 - Engine Applications

For the two Vehicles pictured in Figure 1, each
is offered with two Engine options (Gamma V6
and Delta V8). These Engines are not completely
redesigned for each Vehicle, but are specific
Applications of Engine Product Lines.

Technical Specifications: For each Product Line,
a Technical Specification is developed to manage
the product requirements for the overall design of
the Product, and the specific requirements for
Applications of the Product.

A specific set of requirements for an
Application is called a Configuration, and one will
exist for each Application. Configurations are also
used to specify requirements that are common
across Applications.

Powertrain
Product

Line Alpha

Powertrain
Product

Line Beta

Engine Product Line
Delta V8

Delta V8
- Alpha

Delta V8
- Beta

Figure 2 - Application Configurations

Example - Product Line Applications: Figure 2
shows the two Product Application Configurations
of the Delta V8 Engine that will be used in the
Powertrain Alpha and Beta Product Lines.

mailto:michael.sutherland@galactic-solutions.com

Proceedings of the Twelfth Annual International Symposium of the
International Council On Systems Engineering (INCOSE) - 1 August 2002

michael.sutherland@galactic-solutions.com
© 2002 Galactic Solutions Group LLC Page 2

TYPES OF REQUIREMENTS TRACKED

Product Commitment: Configurations marked
"PC" are Requirement Values that are to be
achieved for an Application Configuration.

Customer Requirement: Configurations marked
"CR" are documented Customer Requirements,
which an Application Configuration is designed to
meet or exceed.

Design: Configurations marked "D" are common
core Designs upon which specific Application
Configurations are built.

Base: A Configuration marked "B" is designated
to specify Requirements that are common to all
Designs and Application Configurations.

CONFIGURATION RELATIONSHIPS

To aid in the reuse and eliminate re-specification
of requirements within the Product Line, a
hierarchical (tree) model defining the relationships
between the Configurations is developed.

Figure 3 - Simple Configuration Definition
Tree

Example - Configuration Definition Tree: The
simple example in Figure 3 shows that there are
two Engine Product Applications. They are given
a unique number for tracking (1, 101, 102, etc),
and marked "PC". They are also represented as
Child Configurations of a Baseline Design, marked
"B". The relationship between the Configurations
is represented in an Explorer-like view to
represent the parent-child relationships.

Inheritance: A Child Configuration will inherit
Requirement Values from the Parent Configuration
if values are not specifically set for the Child. This
process allows for the reuse of requirements for
each Application without re-specification. Using
the relationships defined in the Configuration
Definition Tree, re-used Requirement Values need
only be entered once.

Figure 4 - Requirements Specification

Example - Requirements Value Inheritance:
Figure 4 shows two Performance Requirements
that have been specified for the Delta V8 Engine.
The first has specific values set for the Baseline
Design and each Product Application. The second
shows that no specific value was set for the "V8
Alpha", so the value is inherited from the Baseline
Design and is shown in brackets.

SPECIFICATION OF REQUIREMENTS

This compact line-item form for representing
Requirements has been successful for the
Engineers that are responsible for developing the
Requirements. Often called an "expert view", it is
the form desirable for day-to-day use of the
Requirements by those who are intimate with
them. Supporting and explanatory information is
maintained in the same Technical Specification,
and is "filtered" out to product the compact form.
For verbose reporting purposes, the Requirement
can be extracted programatically and written more
naturally as a Shall statement.

Example - Natural Language Statement: In
Figure 4, the first Requirement can be extracted
as "Engine Rated Peak Power for the V8 Alpha
Engine shall be greater than or equal to 320
horsepower."

Some Application Configurations will require
the addition of new Requirements that do not
apply to the complete set of Application
Configurations. In this case the new Requirement
is explicitly marked with the Configuration ID of the
Application Configuration(s) it applies to.
Inapplicability of a requirement is denoted by a
special "N/A" marking in the Value field.

The concept of Requirement Value Inheritance
can apply to other Attributes of the Requirements
that are being managed, such as Rationale
(reason or source for change), Validation
Procedure, etc. Graphic Objects (charts, tables)
can also be associated with Product Line
Application Configurations when necessary,
although they are not reported in Column form.

Proceedings of the Twelfth Annual International Symposium of the
International Council On Systems Engineering (INCOSE) - 1 August 2002

michael.sutherland@galactic-solutions.com
© 2002 Galactic Solutions Group LLC Page 3

A primary benefit of tracking Product Line
Requirements in the same Technical Specification
is that a Column based side-by-side comparison
for specific Values of each Requirement across
the entire Product Line is a natural outcome.
Columns can be selected and placed to meet the
specific needs of a target audience and the
Column layout can be saved for later retrieval.
Also, access to edit a Product Line Application
Configuration can be controlled per Configuration
as necessary.

Other Configurations can be defined to
manage Subject Matter Expert recommended
values, and benchmark or trade-study values for
similar products. These can also be viewed side-
by-side in the context of the Product Technical
Specification.

COMPLEX PRODUCT LINES

By defining a more detailed Configuration
Definition Tree, many more Applications of a
Product Line may be managed. New applications
can be spawned off of any existing Application
Configuration by adding new Child Configurations
at the appropriate place in the Configuration
Definition Tree. Fifty or more Configurations are
not uncommon.

Figure 5 - Complex Configuration Definition
Tree

Example - Complex Product Line Configuration
Tree Definition: Figure 5 shows a typical
Transmission Application Configuration set, with
variations for Export and Rear Wheel Drive (RWD)
versions based off All Wheel Drive (AWD)
versions.

USAGE

Every Product Line Application Configuration
exists because it will be integrated into a larger
system, or delivered to an external customer.
These are also Product Lines, and as such will
have their own Product Technical Specifications
with Configuration Tree Definitions.

To comprehend Usage, traceability is
established between Product Line Application
Configurations and the higher level Configurations
of the systems that they are integrated into.

Figure 6 - Engine Usage for Powertrains

Example - Usage: Figure 6 shows an example
where Engine Usage is shown for Powertrain
Application Configurations, corresponding to the
example in Figure 1.

Building this knowledge into the process is
essential for developing other kinds of
Requirements Traceability through the Product
Lines. Relationships between Requirements
belonging to specific Application Configurations
can then be formed to represent Functional
Decomposition and Allocation, Interfaces, etc.
Relationships can also be formed between
Requirements from specific Application
Configurations and Analysis Models, Test Plans
and Procedures, etc.

Proceedings of the Twelfth Annual International Symposium of the
International Council On Systems Engineering (INCOSE) - 1 August 2002

michael.sutherland@galactic-solutions.com
© 2002 Galactic Solutions Group LLC Page 4

OTHER CONSIDERATIONS

Configuration Management: Each Product
Application has its own timetable for development
and release. The entire Product Line is managed
with a unified Configuration Management and
Change Control Process. Changes to
requirements are weighed carefully for their impact
on the entire product line, either by an individual or
by a Change Control Board, depending on the size
and scope of the Product Line.

Change to Configuration Tree Definition: If the
relationships between Configurations is changed,
so will inheritance of Requirement Values between
Configurations. The Relationships should be
managed with this this in mind and the impact to
affected parties determined so that no unwanted
consequences occur.

Software Requirements vs. Hardware
Requirements: The strategy outlined here is
primarily being used to specify Performance
Requirements for the hardware components of
complex systems (engines, rudders, etc.)
Software and Controls Engineers have a long
history of successful re-use strategies, mainly
focused on the application and configuration
management of developed software components.
Even though software components are
increasingly designed to be re-used, more
attention needs to be placed on re-use planning
from the Requirements stage of development.

Software and Hardware Engineers also have
very different styles of specifying Requirements.
Software Engineers use Object-Oriented Analysis,
Use Cases, and other methods to specify
Requirements that may not be compatible with the
methods used by Hardware Engineers.

Even though some of the key ideas behind the
strategy outlined in this paper have come from
work developed for Software Product Lines, it has
yet to be seen if the strategies outline here will
help bridge the gap between these differences.

Requirements Management Tools: As indicated
earlier, side-by-side (grid view) reporting and
editing of varying Requirement Values is a major
benefit of this technique. A Commercial Off-the-
Shelf (COTS) tool called DOORS, developed and
distributed by Telelogic, was used for
implementation of the technique. DOORS was
chosen, among other reasons, for its ability to
quickly display and edit information in a
spreadsheet form (rows and columns) similar to
the Microsoft Excel environment that Product
Engineers were previously using to track
requirements.

Implementation of the technique required the
following enhancements to the core DOORS
functionality:
• Definition of standard schema for storing

Configuration Definition Tree, Requirements
and Usage Relationships

• Script to read, interpret and display
Configuration Definition Tree and Usage
relationships.

• Script to allow user to select Configurations
and Attributes to display (view builder).

• Script to update inherited Requirement
Values, based on Configuration Definition
Tree.

CONCLUSIONS

By using Product Line Requirements
Management, development and production effort
for common sub-systems is leveraged, centralized
and minimized. The impact of change is clearly
defined and can be assessed before changes are
made to re-used Requirements. Usage is
comprehended in the Design process, so that
relationships between specific Application
Configurations and Design elements that impact
them can be formed and managed. New products
can be added to the Product Line, or proposed
products can be quickly analyzed for feasibility.

The strategy has proven to be comprehensive
and extensible, and is the base for larger quality
and process improvement efforts in the Systems
engineering organizations that utilize it.

http://www.telelogic.com/doors
http://www.telelogic.com/

Proceedings of the Twelfth Annual International Symposium of the
International Council On Systems Engineering (INCOSE) - 1 August 2002

michael.sutherland@galactic-solutions.com
© 2002 Galactic Solutions Group LLC Page 5

REFERENCES:
Bristow, David J., Bulat, Brian G. & Burton, D.

Roger Product-Line Process Development
Seventh Annual Software Technology
Conference,
http://source.asset.com/stars/loral/pubs/stc95/
plpd95/sec0.htm, April 1995.

Fall, Robert H. & Steiglitz, Jennifer, Comparative
Evaluation of Product Line Requirements
Architectures Developed at Honeywell
Proceedings of the Telelogic Americas' User
Group Conference 2001,
http://www.telelogic.com/usergroup/us2001/tra
cks_intermediate.cfm, July 2001.

Feiler, Peter H., Configuration Management
Models in Commercial Environments
CMU/SEI-91-TR-7
http://www.sei.cmu.edu/legacy/scm/abstracts/
abscm_models_TR07_91.html, March 1991.

Jankun-Kelly, T.J. & Ma, Kwan-Liu, A Spreadsheet
Interface for Visualization Exploration,
Proceedings of IEEE Visualization 2000.
http://graphics.cs.ucdavis.edu/research/Sprea
dsheets.shtml, October 2000.

Loureiro, G, Leaney P.G. and Hodgson M, A
Systems Engineering Environment For
Integrated Automotive Powertrain
Development, Transactions of the SDPS
http://www.sdpsnet.org/journals/vol3-
4/loureiro.pdf, December 1999.

Software Engineering Institute -Carnegie Mellon
University - The Product Line Practice (PLP)
Initiative, http://www.sei.cmu.edu/plp/.

Vinga-Martins, Dr. Renato, Requirements
Traceability for Product-Lines Workshop on
Object technology for Product-line
Architectures,
http://www.esi.es/Projects/Reuse/Praise/pdf/s
es2-3.pdf June 1999

Zak, Anatoly Rockets R Us IEEE Spectrum
February 2002.
http://caffeine.ieee.org/WEBONLY/publicfeatur
e/feb02/rock.html

Biography: Michael Sutherland is the founder of
Galactic Solutions Group, and has 12 years
experience working with automotive suppliers and
manufacturers. He has been a consultant to
General Motors for 8 years, and is currently
working with General Motors Powertrain and North
American Operations (NAO) Manufacturing
Engineering Divisions, developing and deploying
Systems Engineering Processes and Tools.
Michael has a Masters Degree in Electrical and
Computer Engineering from Oakland University in
Rochester MI. He also specializes in the
Application of the DOORS Enterprise
Requirements Suite, mentoring and teaching
application, customization (DXL), and information
modeling to a wide variety of clients across the
nation.

http://source.asset.com/stars/loral/pubs/stc95/plpd95/sec0.htm
http://source.asset.com/stars/loral/pubs/stc95/plpd95/sec0.htm
http://www.telelogic.com/usergroup/us2001/tracks_intermediate.cfm
http://www.telelogic.com/usergroup/us2001/tracks_intermediate.cfm
http://www.sei.cmu.edu/legacy/scm/abstracts/abscm_models_TR07_91.html
http://www.sei.cmu.edu/legacy/scm/abstracts/abscm_models_TR07_91.html
http://graphics.cs.ucdavis.edu/research/Spreadsheets.shtml
http://graphics.cs.ucdavis.edu/research/Spreadsheets.shtml
http://www.sdpsnet.org/journals/vol3-4/loureiro.pdf
http://www.sdpsnet.org/journals/vol3-4/loureiro.pdf
http://www.sei.cmu.edu/plp/
http://www.esi.es/Projects/Reuse/Praise/pdf/ses2-3.pdf
http://www.esi.es/Projects/Reuse/Praise/pdf/ses2-3.pdf
http://caffeine.ieee.org/WEBONLY/publicfeature/feb02/rock.html
http://caffeine.ieee.org/WEBONLY/publicfeature/feb02/rock.html

